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BAYESIAN INTERPOLATION AND DECONVOLUTION

G. LARRY BRETTHORST
Washington University
Department of Chenastry
C'ampus Box 1134

One Brookings Drive

St. Louis, Missouri 63130-4899

ABSTRACT. The deconvolution problem is addressed in stages beginning with the interpolation
problem when little prior information is available and proceeding to the full deconvolution problem
when a great deal of prior information is available. The results of the calculations indicate that good
solutions to the deconvolution problem are available even when limited prior information is available
and that these results overlap those obtained when u great deal of prior information is available.
The difference between them is that the use of uninformative priors causes large uncertainties in
the estimated signal, while highly informative priors decreases the uncertainties in the estimated
stgnal.

Introduction

The deconvolution problem is important in many branches of science and engineering. In this
problem the “image” or signal is convolved with a smearing function. This function is also called
an impulse response function because the ideal noiseless signal that one would obtain in response
to an input inpulse or delta function is the smearing function for detector. In linear systems
the outpat from an arbitrary input may be written as a convolution or average of the true signal
convolved with the impulse response function. Averaging loses inforiation. In addition the signal
15 contaminated with noise, consequently there is no unique way to deconvolve the signal from the
unpulse response function: rather one must make inferences about the true signal. In this paper.
the deconvolution problem is studied beginning with the simplest “baby™ version of this problem
and proceeding through stages to more and more complex versions of the problem until, finally, the
full deconvolution problem is analyzed. At the end of each stage, numerical examples are supplied
to Hlustrate the calculations.

In the deconvolution problem addressed here, there is a data set D which is postulated o
contain a signal y(¢) plus additive noise:

d(ty) = y(t,) + ny (1)
where uy represents the noise. The data D are a collection of N discrete data samples. ) =
{dd(ty). . ... d(ty)}. The signal y(1) is obtained from a “convolution”™ integral of the form

1y
y(t) = / drrit - 7)u(r) {2)
Jt

where r0 s the impulse response function, and #i£) s the nnhnown sienal. The data 1) have bern

wittten ac one dimensional. althoneh the mathenatie cwill take no notiee of this aod 1he ool




mayv he eeneralized to higher dimensions by simply relabeling the higher dimensional quantities.
The signal that appears in the detector, y(t), will be thought of as a time series, although again
the mathematics takes no notice of this. and one could. for example, interpret ¢ as position, as one
would in an image. The problem is to make the best inference possible for the unknown signal.
w(). from the data and the prior information.

When the impuise response function r(7) is a Dirac delta function

r(t — 1) =&6(l - 1), (1)
the convolution integral may be evaluated and one obtains
d(t)) = u(ty) + ny. {4)

The deconvolution problem has reduced to the “data interpolation”™ problem. Clearly if onc is to
understand the deconvolution problem, then one must have a firm understanding of the interpolation
problemn. For this reason the data interpolation problem will be studied in the first two sections of
this paper.

In the first section, the interpolation problem is addressed, and probability theory will be used
to derive the posterior probability for the value of an arbitrary pixel given the data and the prior
information. In this baby version of the problem the prior information will be that the signal should
be smooth.

In the second section, the analysis of the interpolation problem continues with the use of more
informative prior information. This more informative prior information will include information
about the functional form of the signal, as well as information about the first and second derivatives.
At the ond of each sections several numerical examples are given.

In the third section, the full deconvolution problem is addressed using the techniques and
procedures developed in the first two sections. Again numerical examples are included at the end
of this section. Then in the fourth section the deconvolution is generalized to include more general
types of prior information. Additionally, more cfficient means of estimating the signal and the
uncertainty in the estimate are developed.

1 Data Interpolation — Second Derivative Prior Information

[n the data interpolation problem, there is a signal /. This signal is to be estimated at a num
ber of discrete points. These discrete points will be called pixels. These pixels will be labeled
{ug.....uy41} where

v=0(N 1)+1, (5)

is the number of the pixel corresponding to the last data value, and pixel u;y corresponds to the first
datia value. The pixels labeled uy, ..., u, will be called interior pixels; while wq, and u,41 will be
called bonndary pixels. These boundary pixels are special because they must be handled differently.
The pixel density factor, J. indicates the density of the pixels relative to the data. If 4 = 1 there is
a one to one correspondence hetween the pixels and the data (excluding the two boundary pixels).
If 4 = 2. there are two pixels for every data value. ete. The diserete times 1, correspond to the
pixels. not the data. So the sammpling times for the data are given by {1 a0 taier. ... tu}, and
the data elements will also be labeled to correspond to the pixels: {dy,dyiy.dygyy... . ody}. The
collection of all of the data will be labeled as 1 wihile the collection of all of the pixel will e
Labeled s )




The data D consists of values of the signal {7 plus noise:
dy = uy + 14 i {028+ (6)

where n, is the value of a randomly varying component that one has no way to predict. The problem
is to make the best estimate of any one of the pixels possible. Because we will estimate an arbitrary
pixel u;, we will have estimated all of them by letting j take on any value {0 < j < v+ 1}. From
the standpoint of probability theory, all of the information relevant to this inference is contained in
a probability density function: P(u,|D, 1), the probability that the signal has value u, given the
data and the prior information /. This probability is computed using the sumn rule

P(u;|D, 1) = /\_""‘u.‘---l’(UIDJ)’ )
¥

where P(U|D, I) is the joint prebability for all of the pixel values. The integrals are over all pixel
values, except u;.
Bayes theorem [1] may be used to factor P(U|D,I) to obtain

: _ [ . PWUIDPDWU )
A /-wt PODID Q
1#)

where P(U|1) is the joint prior probability for all the pixel values, P(D[U,I) is the probability for
the data given the pixel values, and P(D|/) is a normalization constant.

Making the standard assumptions about the noise, the probability for the data given U is just
the likelihood function

P(Dla,U,1) = (m’z)—%—exp{_ﬁ S (d, —u.)"}. (9)
by B

where the standard deviation of the noise, o, has been added to the direct probability for the data
in a way that indicates its value is known. Later, the rules of probability theory will be applied to
remove @ from the problem, if its actual value is unknown. The index ¢ [on the sum in Eq. (9)],
means that ¢ starts at 1 and goes to v in steps of J. Substituting the direct probability into the
posterior probability, Eq. (8), and assuming normalization will occur at the end of the calculation,
one obtains

1 v
) -N . ,
f(“;l"vl)-l)“/"'duf"’P(lfll)G exP{_'Za-z t=El(d.—u:)2}- (10)
#1 by

The problem has been reduced to specifying the prior probability, P(U|I).

If one were to ignore the prior, as one would using maximum likelihood. then all of the pixels values
associated with the data values are estimated to be equal to the data, i; = dj, while all of the interpolation
pixels are estimated to be zero. This is the maximum likelihood or l€ast squares solution to this problem.
But probability theory automatically tells one this is not correct. This weighted average will be very
difficult from the maximum likelihood solution. And this difference is maintained even in the limit or
very uninformative prior information.

For any given problein there could be a great deal of prior information available. For example, if
the data were the output from a continuous wave radar, then the signal will look highly : inusoidal;

-




vet significant deviations will occur near the beginning and ending of the signal. [f the radar were 4
pulsed radar. the signal would, at least superficially, be like the derivative of a Gaussian. Again there
could be significant deviations. This information is qualitatuvely different from that normally associated
with a model. where the prior intormation insists that the signal must be of a certain functional form 1nJ
any deviauons from it are to be considered noise. Here the signal should be allowed to make devianions
from the functional forms when the data shows evidence for such deviations. This type of pricr
information will be called "soft" because we do not insist that the signal have this functional torm.

In addition to this soft prior information about the functional form of the signal. one might know
some general characteristics about the signal. For example, the signal might be gererated by some
analogue electronics. Electronics never generates perfectly sharp signals: it always averages things out
Couid smoothness be used as "soft” prior information?

The answer to this question is yes! It is possible to include both types of “"soft" prior intormation
the :calculation. Probability theory can be told that the signal is more or less sinusoidal. withow:
insisting that it be sinusoidal. just as it will be possible to tell probability theory that the signal should *«
smooth with insisting that the signal must be smooth. To see how to do this. the interpolation proble::
wiil be investigated using both of these types of "soft” prior intormation. We begin by including pri ¢
intermation about the “smoothness” of the signal. and then in the next section proceed to include son
Inrormation about the functiona torm of the signal.

1.1 Constraining The Second Derivative

In the traditional interpolation problem, the data is assumed noiseless and one is trying to inter-
polate between data values. The criteria used in splines is typicallv minimum arc length, and one
seeks the shortest interpolation function. Here noise is allowed into the problem. This noise could
be either positive or negative and its effect is to make the data “jitter” _round the “signal” in
a random way. This jitter should be suppressed as much as possible. Mathematically this jitter
corresponds to a rapidly varying second derivative. [t can be suppressed if the second derivative of
the signal can. in some sense, be made “small.”

The data are sampled at discrete times. The first and second derivatives are not defined for
discrete functions. However, one can define analogous quantities which reduce to the first and
second derivative as the sampling density goes to infinity. The first derivative of a continuous

function may be defined as

YO _ S - =) o
dt ~ A-wp 2A '
For a discretely sampled function this becomes
df(t) S+ A) - f(t - A) -
dt; 22 -

where fit, + A) = f(t,41) is the function at the forward sampling time. f(1, - A) = f(t,_;) is the
function at the backward samnpling time, and

N =ty =y =t ~ Loy (13)

is the sampling time. [t is clear from this definition that the discrete first derivative is only an
approxination. This approximation is accurate 1o order A, So if delta is 0.01. i.e., if data were

collecred overy 0.01 seconds. then the discrete first derivative will be aceurate 1o +0.01.




The second derivative is just a derivative of a derivative and is defined as

2 S+ 28y~ f(t)y  f(1) — f(t —24)
ey DY * 24
ar - Ay 2A ' 1

This can be rewritten as

() S 20) 4 f(t - 20) — 2(1) |
== = lim - ) (15)
dt? -0 4142
The corresponding equation for a discretely sampled signal is given by
df(t) _ S(tix) + f(tiy) = 2f(t) (16)

dt? A?

Note that this approximation is accurate to order A%, so if A is small, second derivatives my be
evaluated very precisely, provided sufficient machine accuracy is available.

Now that we have a definition of the discrete second derivative, the prior information, that it
must be “small” must be translated into a prior probability P(U|l). But the second derivative can
be positive or negative. Additionally, the second derivative is defined at every data point, so what
ts meant by “small”? Here “small’ will mean that the mean-square value of the second difference

should be small:
v

Z [uypr + uyy - 2u1]2 = 82, (1)

=i

where 8% is the total second difference. This equation will be referred to as a constraint on the
second derivative for reasons that will become apparent shortly. The quantity 8, is a measure of
the “smallness” of the second derivative. When ¢ is large, large jitter is allowed and the signal
will be estimated to be the data values. When 6 — 0, no jitter is allowed, and the signal will be
estimated to he constant. Somewhere between these extreme values is one which will suppress the
htter without suppressing the signal.

Note that this constraint introduces other parameters into the problem. If for example 3 =
I, the constraint introduces three new parameters: two “boundary”™ pixels, ug and u,4;, and a
regularization parameter which will be called ¢ and is related to 82, If 3 > 1, the constraint also
introduces the “interpolation™ pixels into the problem.

The process of converting Eq. (17) into a prior probability density function is a straightforward
application of the principle of maximum entropy and results in the assignment of a Gaussian prior
probabhility:

v

2
€ .
Py, .. uuo, iy, 0, 0) o< exp ~o Z[u,'.H + oy - 2ui]2 , {18)

=1

where ¢2/0% is the Lagrangue multiplier from the maximum entropy calculation. The fractional
variance 2 will be used to control the amount of smoothing and is related to the mean-square
second derivative.

Three additional parameters: wg and uy4g, the boundary pixels, and the fractional variance o
have entered the problem. These parameters were added to the prior in a way that indicates that
their values are given. Of course in a real problemn their values will not he known and inferences
must be made about them. Al three of these parameters are puisances in the sense that ane wonled
hke to fornmlate the problem independent of their value. This wav be done readily for ug. avd

apprs bt cwidl prove 1o be harder vo deal winly,




What we have derived so far is the prior probability for the interior pixels given the boundary
pixeis. What is needed is the prior probability for all of the pixels. To compute this the joint prior
for wil of the pixels is factored using the product mie to obtain:

Pluo,....upsifeof) = Plun,upprfe o, DYP(uy, ..o uplun, wegr, 6,0, 1) (19)

where Plug,....upsfe.al) is the joint prior for the interior and boundary pixels; the joint prob.
ability for the interior pixels given the boundary pixels, P(uy,..., u w0, uy41,¢,0.1), is given by
Eq.(18) and P(ug,up41le.0.1) is the prior probability for the boundary pixels.

To assign the prior probability for these two boundary pixels, P(ug,upyy]c,o, 1), a different
interpretation of the second derivative will be used. Suppose it is known that adjacent pixels
should be approximately equal:

a Mitl M-l (20)
2
This may be rewritten as
Ugl + w4 — 2u; = 0. (21

But this is essentially just the statement that the second derivative should be small. So constrain-
ing the second derivative to be small is equivalent to asserting that neighboring pixels should he
approximately equal. On the boundary this could be interpreted as

wg = uy  and  ny X Upy4y. {22}
(lonverting this prior information into a prior probability for ug, one obtains
(2 2
Plugle.o,1) < exp —-2—;2-(110-—111) , (23)
and similarly for u, 4,
2
¢
Plupprle,0,1) x exp —-20—2(11,,.,.1 - u,,)z}. (24)

To combine these priors. one uses the product rule to factor P(ug,u,4yle,0.1), and assuming
independence one obtains:

I’( “()v Uv+l|‘v0~ I) = I’(UOi(,U.[)P(UU+]|l,U. 1) (‘2'))
Substituting for P(uple.o. 1) and P(uy41l¢,0,1), one obtains
] (2 2 (2 2
P(ug. upsrfe.a. ) o exp {—5';5 (o — m]” - 257 (s — ] (26)

as the joint prior probability for *'ie boundary pixels. Substituting the joint prior for the boundary
pixeis. Eq. {26), and the prior for the interior pixels, Eq. (18), into the prior probability for all of
the pixels including the houndary pixels. one obtains

(2 2 l‘ p]
Plug. ... upsile,a d) o exp{———{ug— m]* ~ —= [u.41 — uy
Dl Da-

a2 v 1
¢
?”JJ

-~
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Fhis prior can be rewritten as
N

‘ P v

L ! RS S
Plug, o ocupyfeoady = (Ao App]? .—) CXpL - Riqugng (25)
0

% [ P
( <7 = =

where { Ao oo ALgr ) are the eigenvalues of the matrix Ry defined as

[
|

P

=

0
-3 6 -4 1 0

Ry = (0 <k I<v+1). (29)

0 0 1 -3 2

Note that in writing the prior in this form, it has been implicitly assumed that the R matrix
v not singular.  As this prior is written, this is not the case! The [ matrix has one singular
cigenvalue. Apparently one of the two boundary conditions was redundant. This problem must be
resolved before any numerical calculations can be done. The condition that the boundary pixels
shonld be approximately equal to the interior pixels at the boundary be maintained. This can be
done by making a slight change in the boundary conditions:

g = 0.999%u, and un = 1.001uy, 4. (30)

Making this slight change removes the singular eigenvalue and allows the prior to be normalized.
without changing the spirit of the boundary condition.

1.2 Eliminating Nuisance Parameters
Now that the prior has been specitied. it may be substituted into the posterior probability for pixel
uy. g (10}, to obtain
L (N4 v+
I It}i( o DTy cooduy [/\u cee ’\u-H]'z le4 (Nt Hay e
L

1£]
2 4

A1+l
¢ -~
x exp {53 R

o 2nzk»<|l =\ K (31)

I :
S L b L [dy = u,)?

1x]
by i

Fhie integrals are over all pixels. except @ = 3. There are v + | integrals to evaluate.
To evaluate these integrals, the exponent in the likelihood is squared to obtain:

1 A FQ )
I’(lllll,ﬂ,l).l) b /-‘-lll[""[/\“"'.v\,,1|12(7 “+J\*“‘01"’
[

1)
1 . v vl ekl (32
A I [_\'(l-' ‘3 dyuy + } \ :;“n“”"
S T e
by o1




whiere o< s the mean-square data value, define:d as

Foda
B Yoo {33)
' LR
I)_y il
and the interaction matrix gxy is defined as
g =R+ Sy 0<kI<v+1. (34)

The matrix Sy is diagonal and defined as

I Ifk=1!and mod(k-1,4) =0
Skt = (35)

0 otherwise,

where “mod(k — 1,8) = 0” means that (k — 1} is evenly divisible by 3.
There is no integral over uj, consequently u; behaves like a constant. Separating u; from the
intecration variables one has

P("jlhdv D,1) / cedug - [,\”.‘.,\,,+]]'§n-(N+u+2)(u+2
N’

V£3
< exp __Ndz - 2d;uyz + gn_uil
20 J (36)
1 v+l v+l v
X exp “ﬁ[ 'Zguukuz -2) [di~ yqu;'luz]
k#y £ by 8
1#)
where
1 ifj={l.3+ 1,28+ 1.....v}
z = (37)

0 otherwise.

Now that the dependence on u; has been separated from the integration variables. the integrals
may be done by the following change of variables:

v+l

Ap = \/A'k E Uptky (k # ])- (3R8)
1=
t#)
where the uy are given by
s, Averk . .
=3 2 k£ g), (39)
s by
=0 /A
1#)

and \, i. the ith eigenvalue of the jth cofactor of the g matrix, Fq. (31). and ¢k 15 the kth
component of its ith eigenvectar. As a reminder, the jth cofactor of 4 square matrix of rank 4 2
is a ~quare matrix of rank 1. The cofactor is formed by deletine the th row and colnmn
from Vo 1310 Note that in defimne vhe eofactor matrrix the indices have not been relaheled: thes

Al run o zero to o+ b however, the pthe item o opger exists and mast be shipped an all

]




sumibation. This will be noted in the equations where applicable. These new integration variables
have the property that

v+1

Zglkcw = Aewt (1,1 #£7), (40)
.=0

k#j

and

v+1
Zelk(’;k =éu  (4,1#7) (41)
k#]

where &y, is the Kronecker delta function. The volume element of the transformation is given by
dA() s (1A]'_.1dA1'+] e dAy+]
1 I /
\/'\'0"‘)‘J-1 e N

Making the change of ariables and introducing a new quantity Ay(u;):

= dug -+ - duj_1dujqy - duyyy. (42)

hi(uy) = —L Z [di — gsjujlen (1#7) (43)

by {i
i#)
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one abtains

. N:i'-l-—Qd'u‘z+ -u2—~lzu h(u
[)("')l(vda D,[) x (,_—(fvﬁ—l/-}-?)‘ll-iaexp{_~ 177 i}]z ] J) ( J)
o

v+1
X /---dA.---exp{ 222[/1. ’lz(uJ)]}

- =0

#) %)
where the square on the quadratic terms was completed, some factors of 27 were dropped. the
determinate (which is a constant here) was also dropped. The quantity h{u;) - h(u;) is defined as

v+l

h(uj) - h(u;) = Zh,-(u_,)'z. (45)
=1{}
%7

Lvaluating the v + | integrals gives a factor of (271'62)(”*”/2, and one obtains

Nd? - 2jujz + gjgul — hug) - h(u,)
Pluyla, e, D 1) a'(N“)("“oxp - 1) 13 ! ] (46)
20t :
as the posterior probability for the jth pixel. If as assumed so far, the variance of the noise and the
value of the fractional variance ¢ are actually known, then there are a number of additional terms
that are constants and these constants will cancel when the distribution is normalized. Dropping

these terms, one obtains

~ . _,,J]uj + h(u]')-h(n])} e
{4

2dyu,
Pluyfoe DT x exp o

as the posterior probability for the jth pixel given the standard deviation of the noise, the fraetionag
varine e the datac D ownd the prior information £,




1.3  Elminating © As A Nuisance Paramneter

In most real problems neither o nor ¢ are known: they are nuisance parameters and should be
treated as such. This is easy for o, but « 1s more difficult to deal with. To make inferences about
uy independent of @ we apply the sum rule to obtain

Pujle, D.1) = /dn[’(uj,al(, D, 1. (48)

The right-hand-side of this equation may be factored to obtain

P(uy,0le,D, 1) Puy,olc, I)P(Dluj,a,¢,1)

]

P(;| 1) P(al1)P(Dluj, @y, 1) (49)

1l

P(all)P(u;|D,0,¢,1)
where it was assumed that the prior probability, P(u;,ole,I), was independent of ¢ and that
P(u,,a|l) = P(ui|l)P(o|I). Inserting this result into Eq. (48) one obtains

P(usl¢, D, I) = /dol’(n“)l’(uﬂa,t,[),1) (50)

where £’(a{l)is the prior probability for the variance, and P(u;|o,¢, D, I)is proportional to Eq. (16).

The posterior probability for u; may be computed provided a prior is assigned to the noise
standard deviation. Having no specific information about ¢, a Jeffreys prior 1/0 {4] is assigned to
obtain:

1 —
~-N y vap - .. . r
P(ujle, D, I} [daa exp {-—EE [Nd‘—-2d1u12+g”11?—h(u])-h(u])]}. (51)

Evaluating the integral, one obtains

g -
h(uj) - hiu,) + 2dju;z - gjﬂiz-J 7

(52)

P(ule, D, 1 1 - e
(usle ) [ Nd*¢

This is a Student ¢-distribution, and it is this result that is applied in the numerical examples.

Suppose a simple experiment has been run for 100 seconds and a data item was gathered every
second, thus obtaining N = 100 data samples. Suppose the data gathered in this experiment
looked like that shown in Fig. | {a constant signal of value 5, plus Gaussian white noise of standard
deviation of 1). In the calculation so far, only one pixel may be estimated at a time. But any
pixel may be estimated, so all of them may be estimated. In this numerical example, 7 = 59 will
be used. At the end of the example, the results will be shown for all of the pixels. To estimate
us9 one needs only to apply the posterior probability for the pixels. But this probability density
function assumes the value of ¢ is known and the estimated pixel value depends on what value of ¢
is chosen. Before the pixel valie can be estimated, a procedure must be developed that allows one
to estimate or set € to a reasonable value.

1.4 Fstimating The Regularizer ¢
If one follows the rules of probability theory exactlv, the way to proceed is to multiply the probability

for the prisel given the value of e by a prior probability for cand integrate. Unfortunately. o appears
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Figure 1: Interpolation  The Data
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Fig. 1. The data contain a constant signal of value 5, plus noise of standard deviation one. The problem is
to make the best estimate of a pixel given only the information that the function mnust be smooth and these

data.

in the problem in a very nonlincar way and evalnating the integral in closed form has not proven
possible. However, there are approximations which will allow one to proceed and obtain results
that are nearly identical to the exact procedure. If the joint posterior probability for pixel usq
and ¢ is sharply peaked, then removing the regularizer by integration, essentially just constrains
the regularizer to its value at the maximum of the joint posterior probability. If the value of
the regnlarizer near the maximum can be determined, then ¢ can be constrained to this value
in Bq. (52). The results obtained will be nearly identical to what would have been obtained by
remaving ¢ by integration 7).

To determine areasonable value of €, the probability density for the regularizer will be computed.
From this probability density function one can locate the value of ¢ for which the posterior is
maximized. ‘This maximum may be used in Eq. (52) to obtain ihe posterior probability for the
pixels, The estimated pixel value are dependent on the value of ¢, so it is important that a value
near the most probable value be used when estimating the pixels.

To illustrate that a good estimate of € is necessary, consider Fig. 2. Here two different values
of ¢ were used: one small and one large. In panel 2(A), ¢ = 0.01. The data values are shown as
open cireles, and the reconstruction is shown as the solid line. The pixel estimates plotted are the
mean or expected values of the pixels. These were computed using the procedures developed in
Section 4.1, For now it is enough to know that the values are just the ones given by the maximun
of the posterior probability for the pixels, given the value of ¢, Eq. (52). For small ¢, the prior
information is essentially irrelovant, and the pixels are estimated to he equal to the data values,
This effect 1s seen 1n panel 2{A), where the reconstruction follows the data almost exactly. The
opposite eflect ocenrs when ¢ - 2. Here the prior s important and the data are irrelevant, and
the pixels are estimated to he a constant, zero. Somewhere between these two extreme values s
reeton which = appropriate for this problem.




Figure 2: The Estimated Pixels As A Function Of «
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Fig. 2. Panel (A) contains the data (open circles) and the estimated pixel values (solid line) for ¢ = 0.01.
Here ¢ is too small and the reconstruction pays too nmch attention to the data. In panel (B), ¢ = 1,000,000,
and 1s too large; the estimated pixels (solid line) does not pay enough attention to the data (open circles).




Fo find this region. one can compute the posterior probability for «. Using the sum rale from
probability theory, this is given by

P, 1) = /duo~-~(lu,,+1tlnl’((,n,u(,,...,u,,HID,I). (53)
The integrand can be factored using the same steps shown in Eq. (4R8) to obtain
P(ID,T) = /(lun---du,,.Hdol’((,a]l)l’(uo,. wpptleca, D) (54)

where P(¢,a]l) is the joint prior probability for ¢ and a. Further, P(uq, ..., upp1lc.0,D. 1) can be
factored to obtain

P(e|D, 1) = /duo...du,,+,d(rl’((|l)l’(a]]) 55)
9]
X P(uo,...,uu+||(,a,])P(D|(,a,uo,...,u,,.,.],l)

where P(uq, ... upqile,a,1) is the prior probability for all of the pixels given ¢, o, and the prior
information /; and it is given by Eq. (18), P(D{c,a,ug,. ... up41,1) is the likelihood for the data
and is given by Eq. (9), and P(e|l) is the prior probability for & and was assumed independent of
«. Substituting Eq. (9) for the likelihood, Eq. (18), for the prior probability for the pixels and a
Jetlrevs prior for both ¢ and o one obtains:

Peb, 1) /duo o duygrda{dg - Ay ]Fa - N 4

2 v4l v+l
X exp _'_—22_4 Ryuguy
208 £~ ;‘4’ (56)
] v
X expd—=— Z [di — u)
by 8

where the eigenvalues {Ag,..., Ay41} must now be kept, because they are functions of €.
To evaluate these v + 3 integrals (¢ 4+ 2 integrals over the u;, and one over o) the quadratic in
the likelihood is expanded to obtain something very much like Eq. (32):

P(e|D, 1) « /ul,...,u,,da[)\o---A,,+|]%a_("+N+”¢”+l

! _ v vl vl (57)
X exp Y= [Nr[‘ -2 Z diu; + Z Zguukm] ,
l:;:;‘u k=) (=0

where gg was defined carlier in Fq. (34). Unlike what was done earlier. here there are v+ 2 integrals
over all of the u,. Thus no intermediate steps are involved where the cofactor of gi was defined.
MIthat is wecessary is that the g matrix be diagonalized.

In the process of doing these calcnlations, several matrices will have to be diagonalized. and
the procedures for doing so are all essentially the siome. One introduces a new set of integration
vatiables based on the sinpgnlar-vadue decomposition of the iuteraction matrix. and transforms 1o
the new vartables, Tu these variables all of the Gianssian quadrature inteerals separate and mav b

dore vrviallys Becanse sl of these integrations are very simtlar, the details will be omntrea and

1D




only the tesults of the caleulations given. In this case. after having evalvated the » + 2 integrals
the posterior probability for « independent of the pixel values is given by

1
Pl ) = /,1(: (ﬂ_i'ﬁ> o (N1

(RIS | (5%)
5
NdZ = h(e) - h(e)
X exp{- )
where Y
]
hi(¢) = —= dey, {(59)
by g
v+1

h(e)- h(e) = Zh,—(«)z, (60)
=0

{Ao..... Au41} are the eigenvalues of the Ry matrix defined in Eq. (29) and { X, .. A4 ) and e
are the eigenvalues and eigenvectors of the g;+ matrix defined in Eq. (34).

The remaining integral is very similar to what was done earlier, Eq. (52), when ¢ was removed
and again only the results are given here

3 -

Ag--- A hie)-h :

Ple|D, 1) & [vFl ) v [1--‘-@-)} . (61)
’\0 T A4 Ng?

When ¢ — 0, there is effectively no prior, and the pixel estimates go to data values. However,

when ¢ —- ~0, the prior dominates and forces the second derivative Lo zero and the reconstruction
goes to a constant. As ¢ = 0 the likelihood termn [the term in square brackets in Eq. (61)] is going
to infinity like =Y. However, the prior term (essentially ¢“*!) is going to zero at exactly the
same time. Somewhere between these two extreme values there lies a maximum in the posterior
probability that acts as a trade off between the prior and the likelihood.

Iigure 1 contains a simple data set with N = 100 data values. The “signal™ in these data is a
constant of value 5, plus additive white noise of standard deviation 1. Using the procedures derived
so far, the value of the 59th pixel is to be estimated. As was mentioned earlier, before the value
of pixel usg may be estimated, one must set the value of ¢. Using the posterior probability for
¢, this may now be done. This probability density function is plotted in I'ig. 3. This probability
distribution has a well defined maximum near 70, and a mean value of approximately 93. Note
that for values of ¢ smaller than 10 and larger than 270, the probability for ¢ is essentially zero. So
whatever value of € is used, it should be somewhere in these bounds.

Figure 4 contains the posterior probability for usg given ¢ = 10,80,93. and 200. Note that
for the maximum aud mean (Panels B and C), the posterior probabilities are almost identical.
However, when € is too small (Panel A), the posterior probability is smeared ont and broad; on the
other hand, when ¢ is too large {Panel D), the posterior probability is too narrow. It is interesting
to note that as ¢ — 0 the width of the posterior probability becomes large, while the estimated
pixel values go to the data values. Estimating the pixels to be equal to the data is the maximum
likelihood resuit. In this limit. there is no prior information about the signal. Probability theory
is warning vou that there is no way to differentiate between the signal and the noise; the signal
could he anvthing consistent with the total mean-square data value. In the other imit, ¢ — x|
deviation~ from a constant are not allowed . Fssentiallv the results goes 1o the mean 4 ~tandard

deviation estimate of the constant.
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Figure 3: The Posterior Probability for «
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Iig 3. The posterior probability for € was computed using the constraint on the second derivative. This
probability density function has a well defined maximum with a peak near ¢ = 80, and a mean value of 93.

2 Data Interpolation — General Prior Information

Before proceeding to the deconvolution problem, the data interpolation problem will be generalized
to include other types of prior information. Three types of prior inforination will be included:
information about the functional form of the signal and about its first and second derivatives. As
was demonstrated in the previous section, what differentiates the results of a probability theory
caleulation from a maximun likelihood or least squares calculation is the presence of the prior
probahility. In the previous section onlv prior information about the second derivative was used,
here three different types of prior information will be used. To utilize all of this information there
are two tasks that must be completed: first, cach of these three pieces of information must be
formulited into a prior probability, and second. these different priors must be combined into a
single prior which expresses all three pieces of information.

To see how to convert each of the three types of prior information inte a prior probabilities,
suppose the signal is known to be sinusoidal. The total difference between the signal and the data
is given by

N

Z [us = A cos(wt, + 8)]. (62)

1=1
What is actually known about this difference? Would one expect this to be zero, positive, or
negative? If the signal is known to be more or less sinnsoidal, then on average one would expedct the
ditference to be small and its vadue could be either positive or negative. So the prior information 15
consistent with a zero mean value: e, no information is available that would lead us to expect this
difference to be either positive or negative upon repeating the experiment many times. Second, the
mean-sgquare difference is expected to e nonzeros e we expect some deviations from the maodel,

Now the principle of wasinnm entropy can be wsed to assign a probainlity density function ©oohe-




Figure 4: The Posterior Probability for Pixel wusgg
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Fig. 4. The posterior probability for usg is shown for € = 10 panel (A), ¢ = 80 panel (B), ¢ = 93 panel (),
and ¢ = 200 panel (D). Panels (B) and (C) correspond to the peak and expected values of ¢




difference. But note that this difference is not necessarily noise, it merely reflects our uncertainty
i the actual functional form of the signal. When maximum entropy is applied. it will assign a
Gaussian prior to this difference. Because for a fixed mean-square the Gaussian has highest entropy.
and s therefore the feast informative distribution possible. From the Gaussian distribution one can
assign a prior probability for the difference between the pixels and the model. For this sinusoidal
example, this probability density function is given by

2 N
PlugjA,w.0,¢,0.1)) = n’N(N(*xp - , u; — A cos(wt, + 8) 2l (63)
D02

1=1

where the parameter ¢ neasures the amount of misfit between the pixels and the model. As
ocenrred in the previous example, this prior has introduced a number of additional parameters: A
an amplitude, 8 a phase, w a frequency, and a fractional variance €2. Some of these parameters may
he known, but more likely either they will have to be eliminated from the problem, or inferences will
have to be made about them. For the time being, no assumptions will be made, and the problem
will be formulated in a way that either they may be eliminated as nuisances or inferences may be
made about them.

2.1 Formulating The Prior Probability

Three tvpes of prior information will be included in this generalization of the interpolation problem:
information on the functional form, and on the first and second derivatives. These will be labeled
I1. Iy and 13 respectively. The prior for cach of these will be formulated separately and then
cowbined into a single prior for use in the generalized interpolation caiculation.

Information Iy will be addressed first. This information assumes that something is known
about the functional form of the signal. The functional form will be written as A fy(t;), where A
is an amplitude and, for example, f1(¢;) might be a sinusoid. The total mean-square difference 6%
hetween the model and the pixels is given by

v

Z[“" — Afi(t))? = 62, (64)

1=}

If 4 0, the model must follow the functional form exactly. If §; -- ~ then the total squared
difference goes to infinity and the reconstruction will follow the data.
Using information Iy in a maximum entropy calculation results in assigning a Gaussian prior
1
(? v+

l’(uq,...,ILU+||A.(1,U,11)(‘X(‘Xp ~—;—2 [11,.'~ Af](l,)]2 (65)

1=t
where o is the fractional variance associated with information [;. As was noted earlier, the prior
has introduced two new parameters: A, ¢;. Last, note that the prior has not yet been normalized.
this will be done after combining the three priors.
Information [y specifies how the first derivative is to behave. Assuming the functional form of
the first derivative is given by 13 f5(t) then

g

}: [egy = oy 2B L000] = 42 (66)

11

where s an amplitade, and A, s the totad sqguared difference. Usine this as a constramt an o

i entropy caleulation allows us to assign o prior probability 1o the ditference hotweer thee
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modeled dervative and the pixels:

2w
, 2 . 2 -
Pruy,oooouglBowos w0 ) ocexp { - oy Z[u,+1 — Uy - Z[ff)(l,)]) {67}

where two additional parameters, B the amplitude, and €4 the fractional variance have been intro-
duced.

Information /3 specifies how the second derivative is to behave. Assuming the functional form
of the second derivative is given by C f3(t,), one has

Z[u,'.H + uj_y — 2uy - Cf;;(t,')]2 = 6% (68)

1=1

where (7 is an amplitude associated with the second derivative, f3(t) is its functional form, and 6%
is the total squared difference. Repeating the maximum entropy calculation gives

2 v
Al l ol p >
Pluy, ... u,|C un, upi, 3,0, [3) o exp —_—2% E [egr + nimg — 2u, — C f3(ty))? (69)

=1

as the prior probability for the pixels given information I3, where C is the amplitude, and 4 is the
associated fractional variance.

Note that three unknown amplitudes A, B, and (’, three fractional variances ¢%, ¢4 and <%, and
two boundary pixels ug have entered the problem. The three amplitudes and all of the unknown
pixels will be eliminated from the problem as nuisance parameters. In this problem it is critically
important to ensure that proper priors are used. A proper prior is one which is normalizable.
Improper priors are ones which cannot be normalized. Strictly speaking a function that cannot be
normalized is not a probability density function. Two examples of improper priors are the Jeffreys
prior and the uniform prior. The Jeffreys prior is improper when the limits on the parameter are
taken from zero to infinity. The uniform prior is improper whenever one of the limits is taken to
infinity. In spite of this the use of improper or unnormalizable prior probabilities in parameter
estimation is often convenient and harmless. However, in this problem the use of tmproper priors
must be aroided because the normalization factor associated with the prior does not always cancel.
Consequently a normalized prior must be used for A, B and C as well as for all of the pixels. These
parameters are location parameters, and the prior which correctly express information about a
location parameter is a Gaussian. Consequently, the prior for the three amplitudes A. I3, and ¢
will be taken as

2
P(AB,Clin. Iig) = (210%) ™2 exp § -2 (4% + B2+ 7] 1, (70)

where [ -~ [ 14 was made to differentiate [ from [y, I, and [3. This prior says that the three
amplitudes may be either positive or negative and we do not know which it is. If ¢y is small,
then this prior does not express a strong opinion about the amplitudes, other than small absolute
magnitude is preferred. It will be assumed that ¢g is set from prior information and that its actual
value is known. So long as this value is small, the only purpose served by the prior is to prevent
anv sincular mathematics from occurring because. So whatever value is assigned to ¢, it will not
change the results, provided it ¢ € 0.

Just a~ information Iy, [> and [4 can be nsed 1o constrain the interior pixels. they mayv also be
nsed 1o constrain the bonndary pixels. Information [y specified a functional form for the sipnal
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There is no reason that fi(4,) cannot be evaluated at the boundary. This will give

2
Plugla, 1) « exp ——;2(7‘._;[110— Afl(to)]2 (71)
and
» “f 2 .
P'(uy]a, ) « exp -5(—7,—1[11,,“ - Afilty41)] (72)

as the prior probabilities for the lower and upper boundary pixels.

Information I2 specified prior information about the first derivative. When the first derivative
was defined, a symmetric difference equation was written, Eq. (12). This symmetric difference can-
not he used on the boundary because it would introduce still more unknown parameters. However,
a forward and backward first derivative can be used. For ug one has

2
€
P(uglez, 0, I2) o exp —E:—z[ul - ug — Bfg(tg)]2 . (73)

Similarly a backward first derivative may be defined and used to formulate a prior for u,4;. This
prior is given by

€. B
Pl prler,o002) o« exp —,—,(-j;[’lvn -y~ Bfalta)]* Y (74)

But just as occurred earlier, care must be taken here because these boundary conditions are not
enough 1o make the prior associated with [, normalizable. So when this prior is actually pro-
grammed the constraints will have to be modified just enough to make the matrices associated
with them nonsingular.

The last information Iy may be used to specify a prior on the two boundary pixels. However, now
we have a functional form for the second derivative. The second derivative cannot be interpreted
as specifying that neighboring pixels be approximately equal. That interpretation was possible
heeanse the prior information assumed adjacent pixels were approximately equal. Here we could
specify a forward and backward second derivative. but that will not work because the forward
second derivative at ¢y, is the same as the symmetric second derivative at time ty, consequently we
would be trying to coustrain the same quantity to two different values. Without doing something
much more complicated, there is no easy way to constrain the boundary pixels using the functional
form of the second derivative. This is not a problem, because [} and I, have already supplied more
than enough information to form a normalizable prior for the boundary pixels.

2.2 Combining Different Prior Information

From the previous subsection there are ten probability density functions expressing prior infor-
mation about the pixels (ug,....uy41) and the amplitudes. What is needed is a single prior that
express the information contained in all ten of these priors. The process of combining these priors
is begun by adopting some new notation.

There are three amplitudes, two boundary pixels, and v interior pixels. There are v + 5 total
parameters {excluding the three fractional variances). All of them but one are to be eliminated as

nuisances. To facilitate this, the pixel values {ug,.... up4} and the three amplitudes A, B and




will be taken as a collection V. The elements, vy, are defined as:

u, if0<i1<v+1,

A fi=v+2, .
"=\ ifi=v+3, (79)

C fi=v+4.

In this notation the posterior probability for the jth pixel is given by

Plr)jen. 1 €e2,¢3,0,D. 1) x /-~-dv,w--P(Vl(o,q,(g,cg,a,l)o‘ oxp{—— Z[d - zw,] }
‘—w
¥ I)y H

where the word “pixel” will be used to refer to all of the V, including the three amplitudes A,
B and ('. The three regularizers have been added to the probability density function in a way
that indicates their value are known. As was done earlier, if there values are not actually known
probability theory will be used ecither estimate them or remove them.

In this problem it will be assumed that the prior information is independent and the prior
probability for the pixels given the total prior information is just the product of the probabilities
given the individual pieces of information:

P(Vieo, Iy, I2, I3 I yq) = Plvo,....vpsallr  Lg1g) P(vo, - vealdes L))
X P(UOv-- '1vll+lll3ylold)P(vV+27UU+39vll'+'4|(07]0ld)v

-1

-1

where P(vg,...,vp41]lh, 1)) specifies the prior probability for the interior and boundary pixels
given information Iy, P(vo, ..,vu41ll2,1514) specifies the prior given [y, P(vo,...,vu41]13,1514)
specifies the prior given I3, and P(vy42, vu+3, vpaleo, Io14) specifies the prior information for the
three amplitndes. The independence assumption was used to factor the prior in this particular
fashion.

The first three terms are all of the form P(V|¢, ,"lold)' These may be factored into a lower
boundary prior, and interior prior and an onter bonndary prior:

PVia, h,lg4) = P(vo|q,1|.lold)[’(rvl,...,v,,lcl,ll,lold)P(1r,,+||(1,ll,l()]d). {(78)

These three priors were given in the previous section. This process may be repeated for information
I3 and [y with similar results. The remaining term, P(vy42,vp43, Vutalen, o)), wWas given by

Eq. (70).
For information [y, the prior probability is given by Eq. (65)

2 2 v+1
P(Vl(o,(l.ﬂ.ll.lold) X eXp {-—-—/12 - —%Z[v, - ,»\f)(l,)]z} R (TQ)

where the prior information for A, Eq. (70), was included in this equation. This may be rewritten

o2 v44 v
1 T
l'(Vlfu.H-ﬂ.lhlnl(l)*1 f'xp{nmg lz;‘i“ru(} (R0)

in matrix form as




where the matrix Wy is given

Wit

with (0 < kI < v+ 4)and

A

i

Aq

v+2

Similarly for information /2 the prior probability becomes

P(Vl‘n\(‘.’,(ﬁl‘qu()](]) X (‘Xp{—

=1

0 0 Ao 0 0
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1 0
0 1 At
Avet Avs2
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And tnmatrix form this prior is given by

2
(Vg o 2,1 q) « vxp{——iZ

The matrix Yy is given by
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where 10~ kL v

+ 1) and

B,
B,
B,
B,

Byy

Byys

= fato) + falty),
= fa(t2) — fa(to),
= faltiyr) = fa(tizy),
= fotvs1) = fallo1)y

= ~[fa(ty) + foltusr)],

(2<i1<v~-1)

2 v
gl AR+ Sl

Last, for information {3, the prior probability for the pixels is given by

2 2 v
[ B
P(Vley, e3,0,13,1)4) o exp {“E,%Cz - '2'3_2' 2 [vigr + vig — 20 — Cfs(ti)]z},
1=]

which can also be written as

P(Vlieq,3,0,13,15q) « exp{—

with the matrix Yy defined as
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0
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Finally, combining these three priors, one obtains the probability for the pixels given /4. I},
[a, and Is:
| v+4 v+4
(V]eo, €1, ¢0, 63,0, 1) oxp{ 551 ?: IZ: (un + (2Xkl + f';Ykl) UKl §, (91)
0 =0

where Iy, Iy, I3, I g — 1.
Before returning to the main problem, this prior must be normalized. To do this the matrix
Zi s defined:

Zi = EWl+ X+ vy (92)

and the fully normalized prior probability for the pixels is given by

s 1 vi4 v44
P(Vleo,€1,¢2,€3,0,1) = (2#62)‘%,//\0 c Ay exp{—-é;-z- Z szlvkvl (93)
k=0 I=0

where {Ag.- -+ Ay4q} is the product of the eigenvalues of the Zji matrix.
The prior, Eq. (93), may now be inserted into the posterior probability for the jth pixel, Eq. (76),

to obtain:
P(?)j](u,([,(2,€3,0, D,I) (5.6 / . -dv,- oe (T_(u+5)‘ //\0 v ;\UH
[ g—

1)
v+4 vi4
X expl = Zkivkv
2 g ) (99
-N [« 2
x o7 Nexpd —=—3 ) (d - )
{ 20 Zl:
by 8

vis
where a factor of (27r)”_'§_ was dropped.

2.3 Eliminating Nuisance Parameters

To obtain the posterior probability for vj, all of the parameters except »; must be removed by
integration. There are - + 4 integrals that must be evaluated. These integrals are very similar
to those evaluated in the previous section and few of the details will be given. To evaluate these
integrals, the exponent in the likelihood, Eq. (94), is squared to obtain:

Plyylen,a, 63,0, D,1) /---dv,"-- [)\()-'-/\,,H]%U_(N+V+5)
Nttt

J

.#
7 v v (95)
X oxp{ oy [Nd‘ -2 Z div; + Z ng,vkvl]}
=1 =0 =0
by g

where d? is the mean squtare of the data, Eq. (33), and the interaction matrix, ggy, is given by
gk = 2t Sk < kiI<r+4 (96)

where Sy was defined earlier. Fq. (35).
Note that the gz matrix has been redefined. In fact 1hat is not quite 1rne it has boen generalized.
Aswe proceed thongh this caleulation, cach section will generalize the results from the previous
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sections Whenever passible, these generalized equations will use the same notation to represent
the seneralized quantity.

The integrals are over all of the V', except v,. Pixel v; behaves like a constant and must be
handled in a special manner. Separating vy from the integration variables one has

P(vlen e e.63,0, D, 1) x /-~-dv.-~-[,\(;-‘-,\,,Hﬁa‘(N“"*s)
L —

1#)
Nd? - 2d;v,2 + gj,v}
X exp{- ‘
202 (a7)
|yt v
X exp [ ng‘vkvl - 22 (dy = 1504 v]
=0 =0 1=0)
k#y 1#y 1#)
where = was defined earlier, Eq. (37).
Lvaluating the v 4+ 4 integrals gives
Nd? - 2dv;z + g;;v2 — h(vj) - h(v;
P(v)leo,€1,€2,63,0. D, ) x exp { — 1) 9155 (v) - 1(v;) (98)

202

as the posterior probability for the jth pixel with

h(vy) = ‘/. Z [di = gjv;len (L #7) (99)

1=1
by 8
1#)

and 44
h(v)-h(v;) = § hi(v;)2 (i #7) (100)
i) - h(vs ; )

where ¢y, is the ith component of the lth eigenvector of the jth cofactor of Eq. (96) and A is the
1th eigenvalue of this matrix.

If the variance of the noise and the regularizers are actually known then the problem is completed
and Fq. (98) represents the best estimate of the jth pixel one can make given the three types of
prior information. However, in general a and «,....,¢3, are not known and must be determined
from the data.

2.4 Eliminating ¢ As A Nuisance Parameter

The posterior probability for v; independent of @ is computed in a way analngous to what was
done in subsection 1.3. The details of the ralculation will not be repeated here. However, as
a reminder, one must assign a prior probability to the standard deviation (here this is a Jeffreys
prior), and integrate with respect to o over its valid range of values. Note that we cautioned against
using improper priors in this calculation and this is essential for location parameters. However,
for the scale parameters (the fractional variances, and @) use of improper priors is harmless. This
distribution is given by

I(vy) - h(vy) + 2d5v52 — f[)]1); -t
Nd?

This is o Student f-distribution and this result will be applied in a numerical example. but before

)(U]'I((),(],(Q.f';.l).l)fX I - (]0”

it can be used, en, €1, 2. and ¢y must either be known or be estimated.
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2.5 Fstimating The Regularizers

The joint posterior probability for ¢y, ¢, and «; will be computed and used to set the regularizers.
[t this calculation €g will be assumed known. This parameter relates to the prior uncertainty about
the amplitudes A, B, and /. It will be assumed that the experiment was designed in such a way
that is adequate to actually capture the data in question. This implies that one knows the strength
of the signal, at least to order of magnitude and this information was used in setting ¢g. However.
the other three parameters, ¢, €2, and €3 relate to how important the prior information is compared
to the data and this is probably not known before actually taking the data. Inferences will have to
be made about these parameters.

To make inferences about these parameters, one uses the rules of probability theory to eliminate
the nuisance parameters from the problem. Here the standard deviation, o, will be removed from
the posterior probability, and then the rules of probability theory will be used to make inferences
about the three regularizer. This calculation is again essentially identical to what was done in
subsection 1.4 and the details of the calculation will not be given. To proceed a prior for o, €1, €
and €3 must be assigned. Here a Jeffreys priors will be used for the prior probability for all of the
regularization parameters; one obtains

N
Ao A } h(ey,e2,€3) - h(ey,€2,€3)17 2
N -1 0 +4 1,€2,€3 1,€2,€3
P(er, ez, e3le0, D, 1) o (€r€2¢3) '\—6_%:—:4 [1 - NI ] (102)
s the joint posterior probability for ¢, €2, and 3, where
l v
h(e) = —== Z djey;, (103)
\//\—; =1
by 8
and
v+4
hey,eo,€3) - hey,€2,€3) = Zhg(q,eg,(;)z (104)
=0

where {Ag,. .. AL 4} and ¢, are the cigenvalues and eigenvectors of Eq. (96).

To illustrate the use of the joint posterior probability, the example begun in the previous
subsection will be continued. For simplicity only prior information about the functional form of
the signal will be used in this example. The data in this example are the same data used in Fig. 1.
These data has been repeated in Fig. 5. The solid line in Fig. 5 is the estimate of ail of the pixel
values when the maximum of the posterior probability is used as the estimate. The dashed lines
are the estimated uncertainty in the pixel values in the (mean + standard deviation) sense. These
estimates assumed the value of the regularizer was known.

To set the regularizer, the posterior probability for ¢; was computed. This is given by Fig. 6(A).
Note that this posterior probability density function has a well defined maximum near 3. If one
computes the mean value of «) one finds (¢;) = 7.21. It is this mean value for ¢; that was used
to compute the estimates shown in Fig. 5 as the solid line. Note that the estimated signal is flat
and only very small deviations are observed from a constant value. Also note that the estimates
overlap the true value of the constant, 5.

Next the posterior probability for ugg was computed given that ¢; = 1, see Fig. 6(B). This valne
is relatively far from the value indicated by probability theory. Note that the probability for the
pisel i broad and smeared ont, indicating that uegy has not been well estimated. But also note that
trive value of the pixel ts covered by this posterior! Panel {C) of Fig, 6 is the posterior probahility

for w-a wiven that o 720 Here, the posterior ¢ much sharper, and the pixel i better recorad.




Figure 5. Interpolation Fanctional Form Prior Information
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Fig. 5. The functional form of the signal was used in the prior probability. The maximum of the posterior
probability for the pixels with ¢ == 7.21 is given by the solid line. The one-standard-deviation width of the
posterior is shown as the dotted lines. The data (open circles) are shown for reference.

It is possible to estimate the variance of the noise when ¢ = 1 and ¢; = 7.21. When ¢; = | the
variance of the noise is estimated to be small: (o) = 0.77. When ¢; = 7.21 it is estimated to be
(o) = 0.99. When the posterior probability for the pixels is computed, one finds that the estimate
with the largest estimated noise level has a better determination of the pixels.

Last. note that the - s-standard-deviation error bars shown in Fig. 5 are much narrower than
those shown in Fig. 1, indicating that the constrainu on the functional form was much more infor-
mative than the constraint on the second derivative. But in both cases the estimates easily overlap
the true answers at one standard deviation.

3 Deconvolution

Now that the data interpolation problem has been thoroughly addressed, we are in a position to
proceed to the full deconvolution problem. Fortunately, the preceding sections have essentially
solved the deconvolution problem. As a reminder, in the deconvolution problem there is a data set
D that is composed of a signal plus additive noise:

ty
d; = / drr(ty = Pu(r) + i i={L,041.28+1.....0) (105)
t

where r{t, ~ r) is the impulse response function. On a discrete grid, 7 takes on values only at the
discrete times 7y and this equation is written

v )
dy = >_—:r,,u] + m, R S I S D06 I D 1} {106)
)N




Figure 6: The Posterior Probability for ¢;, and usg
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The posterior probability for €1 15 shown in panel (A). Note that it rises very sharply and then

falls off very slowly. ‘The sharp rise indicates that the likelthood and the prior jointly determine a minimum

value for op well. But the likelihood is uninformative about large values of ;. The slow drop off is just

”H‘ l/(\
the prob

Note that
abiliey s broad and smeared ont, indicating that g has not been well estimated. Panel (C) i the

behavior i the prior. Panel (B) is the posterior probability for ung given that ¢ = 1.

postenior probalnlity for g gaven that ¢ = 7.21. Here the posterior is much sharper, and the pixel is hetter
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whoere
r.]Er(l,—f])AT (107)
and Ar s the time interval between pixel values.

The calculation for the posterior probability for the pixel values proceeds just as in the previous
sections. The posterior probability for pixel v, is given by

2
1 s
Pleieg o, €,€3,0,D00) x / - -P(V)o oxp{—z'-i Z |: P — Lﬁkvk o (10%)

i#) k=0

where the prior P(Vil) will be taken as Eq. (93). Introduction of the convolution operation only
complicates the direct probability or likelihood, not the prior.
Squaring the likelihood and substituting Eq. (93) for the prior, one obtains

P(x,le0,€1.¢2,€3, D, 1) /---du.—---a“‘N+”+5>,/,\o...,\,,+4

1#)

v+4 v+4 (109)
X exp{ [Nd"- - 2; v D + ; 'Z: guvkv,] }
where Dy is a kind of weighted averaged over the data, and is defined as
v
Zr,—kd. if0<k<v+1
D=4 oy (110)
0 otherwise,
the gx matrix generalizes to
gkl = Zkt + Sk, (111
and Sy defined as
v
}: rry H0<kI<v+1
g = =] ‘
Su= !;y” (112)
0 otherwise.

3.1 Eliminating Nuisance Parameters

As observed in subsection 1.3, the pixel being estimated, v;, behaves as if it were a constant in the
integrals and must be treated specially. This is done by separating vy from the integration variables
to nhtain:

NdZ2 ~2D,v; + ¢;;0?
Piv)len,ariez.e3,0.D.1)  x /~--dv,w--rr(N+”+5)('xp{—- 21
[ —

Qa2
1#3

{113)

4 vi4
X oxp{ )04[ AZ qu,v“»,-z;(n 1 1),]}
=) = t

IR ES] 127
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Fyalnating the v + 4 integrals gives

Nd? - 2djv, + gjyv? — hiv;) - h(vy
P(i?Jll(),(|‘(2,(3,(7,1),’)0((‘,)(].){—1 17 g;;z] 1) hlv;) (114)
as the posterior probability for the jth pixel, where
RAa
hi(v;) = —= » [Di - gjivslen (L#7), (115)
1#)
v+4
h(vj) - h(vj) = Lh.’(t}j)"’, (116)
1=}
17

¢1i is the ith compouent of the Ith eigenvector of the jth cofactor of Eq. (111), and X is its ith
eigenvalue.

3.2 Eliminating 0 As A Nuisance Parameter

Computing the posterior probability for u; independent of & is essentially identical to what was
done in subsection 1.4 and the details of this calculation will not be given here. The posterior
probability for jth pixel value is given by

. 27-1%%
I(vy) - h(vj) + 2Djv; — 955v5

P(Ujl(l)|(l1('2$(3ynvl)m 1 - NEi

(117)

This is a Student -distribution and it is this result that is applied in the numerical examples. But
before any numerical calculation may be done ¢q ¢y, ¢9, and €3 must either be known or estimated.

3.3 Estimating The Regularizers

As was done previonsly, g will be assumed known and inferences about €;, €2, and ¢3 will be made.
To proceed. a prior for @, ¢, «o and ¢3 must be assigned. Here Jeffreys priors will be used for
all of the parameters. The prior probability for the pixels was already assigned, Eq. (93), and the
probability for the data is given by Eq. (9). Using these, one obtains the joint posterior probability
for ¢, ¢ and €3:

dvg...d d
P(ey.e2,alco, D) o /%—M[/\o---z\y+4]%a‘(}v+”+5)
gy

] v44 v+4
X vxp{—.-z—;}-L ZZ,]U,"UJ} (118)

==y y=()

1 v v+l

Y. N
X expd -— [d, - § rra)” b
Qerd
1=1 k=0
II_V i
where the eigenvalues, {\y. .., Avast. are the cigenvalies of Dy (923, and wy {from . (M was

tepdaced by vy to conform to the current notation. Fyaluating all of the integrals and droppine
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some rrrelevant constants, one obtains:

1 .
Ao A\ hiey, e ez) - hieyegoes)1™2
Picyoogalaa. DT~ ooy | ——02 [l— = {(119)
Ab AL g Nd?

as the joint posterior probability for the three fractional variances, where

v+4
hi(ey,¢2,63) = —= Y Dieys, (120)

V44
hicy.ez,€3) - h(er,2.03) = Zhu(ﬂ,fz,fz)z, (121)
1=0
{ry..... AL 44} are the eigenvalues of the gy matrix, Eq. (111), and ¢ is the ith component of the

ith eigenvector of this matrix.

3.4 Examples — Deconvolution

To illustrate this calculation. several deconvolution examples will be given which incorporate differ-
ent types of prior information. In the first example, very little prior information will be available:
all that will be used is a constraint on the smoothness of the function. In the second example, more
prior information will be available, 2nd the functional form of the signal will be used to constrain
the deconvolution. In the third example, both sets of prior information will be used to constrain
the deconvolution. The data will be simulated sinusoidal data that have heen low-pass filtered.
This problem is important in radar target identification, because it is the free space signal that
must be known in the target identification problem.
The signal function will be taken to be a pure sinusoid of known frequency and phase:

u; = 10cos(0.3¢;). (122)

However, this signal has been filtered using a low-pass filter:
l [
r(tg) = ~e~ 0B (123)
c

where the constant c is given by
N

—0.25¢; .

c= e ‘ (124)
and the times t, were taken to he 0,1,..., N — 1. Note that the smearing function is defined to
be zero for times less than ¢ or greater than ty. The data are a convolution between the signal
function, u(t), and the impulse response function r(t):

N
dy = $ " 10c0s(0.3¢,)e " Bl blg(r, — 1))/ 4 . (125)
7=

where 1, represents noise of unit standard deviation, and 6(t, — ;) is the nnit step function.
The filter changes the amplitude of the response. Consequently, the time domain signal 1o-noise
tatto - not 100 rather of s wmare like 50 A plot of the pmpulse response fanction for fygg, - shown

in Fig. T0A) Data ttem 100 1~ & weighted average of all ol the preceding signal values, As you go
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Figure 7: Deconvolution - The Data
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back i time, the signal valnes become less and less important in this average, finallv dropping to
essentially zero after 20 sampling intervals. The data values (convolved signal F noise) are shown
in ki, TiB) as the open circles. The true signal is shown as the solid line in panel 7(B). The
convolution introduces an effective amplitude change and phase shift, while the “noise™ introduces
uncertainty about the “true”™ convolved signal.

To remove the effect of the convolution, a constraint on the second derivative will be used. To
apply the posterior probahility for the pixels, one must first set the value of the regularizer. This
is done by computing the posterior probability for the regularizer given the data and the prior
information. Eq. (119). This is shown in Fig. 8(A). As in the previous examples, this probability
den=itv function has a well defined maximum near ¢3 = 0.8. This maximum value was used in
computing the posterior probability for the pixel values, Eq. (117). The maximum of the pasterior
probability for the pixels (solid line) plus or minus one standard deviation (dashed line) is shown
in 8(B). The true signal values are shown as the plus signs. Notice the truc signal is covered almost
evervwhere at one standard deviation. Also note that there is a systematic misfit in the peaks
and valleys. That is because the prior information tries to make the second derivative as small
as possible. At these turning points the second derivative is at its maximum, so of course the
reconstruction will undershoot the mark here. Last, noie that the reconstruction is bad near time

= 100. But probability theory knows ih.s and has widened the error bars, so that the true value
is still averlapped at two standard 4. 1ations.

In the second part of this ex- uple, use of the correct functional form f the signal will be
investigated. Here it will '+ Lumed that the signal must be a cosine with the known correct
frequency. The posterior probability for the regularizer, Eq. (119), is shown in Fig. 9(A). Again
there is a peak near ¢+ = 0.25. This value of ¢(; was then used to compute the posterior probability
for rach of the pixels, Eq. {117). The maximum of the posterior probability for each pixel is shown
in Fig 9(B) as the solid line. The one standard deviation error bars are shown as the dashed lines.
The true signal is shown as the plus signs. Note that the reconstruction follows the signal much
more closelv: The true signal is easily covered by the one-standard-deviation error bars. However,
unlike the previous example this reconstruction does not know about the “smoothness” of the
function so the reconstruction is jagged, even though it actually fits the data better. This suggest
that these two pieces of prior information could be combined, and this reconstruction would be
better than either separately.

Repeating this example using both the second derivative constraint and the functional form of
th - signal is more difficult because now there are two regularizers: «¢; the regularizer associated
<7/ith the functional form, and ¢3 associated with the second derivative constraint. As in the other
examples, to compute the posterior probability for a pixel, we must set these regularizers. [his
is done by computing the joint posterior probability for the regularizers, Eq. (119), and then
marginalizing over either ¢; or «3. In Fig. 10 the joint posterior probability for these two regularizers
has been plotted. The dashed contours are the hase 10 logarithm of (¢, ¢slcg. D.1). The region
enclosed by the contour labeled 9 contains 99% of the total probability. 'The region enclosed by the
contour labeled 8 contains 99.9% of the total probability, etc. The solid lines inside of contour 9 is
the fullv normalized joint posterior probability.

Irom this joint posterior probability for ¢ and «3, it is possible to compute the posterior prob-
ability {or either €) or ¢3 by using the sum rule from probability theory. The posterior probability
for «1 is given by

Plaleo. DI = /.m;'((,.nhn.n‘n (126)




Figure 8: Deconvolution - Second Derivative Constraint
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Fig. 8. In panel (A) the posterior probability for the regularizer €3 is shown. As in previous examples any
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Figure 9: Deconvolution -- Functional Form Constraint
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Fig. 9 In panel (A) the posterior probability for the regularizer €; is shown. As in previous examples, any
value of ¢; close to the maximum yirlds essentially identical deconvolutions. Panel (B) shows the peak value
of each estimated pixel value (solid Iine) plus or minus one standard deviation (dashed line). The true values
are shown as the plus signs.
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Figure 10: The Joint Probability for €; and ¢3

Frig 100 When both constraints are used (second deryvative, and functional form) the joint posterior prob-
abhity for the regularizer 1s a function of both ¢; and ¢, The dashed lines are the base 10 logarithm of
Pley,cfea. D). A change of one from the maximum corresponds to including 90% of the total probability.
So effectively everything outside of the contour labeled 9 is irrelevant. The closely spaced solid contours
are the fully normahized posterior probability. ‘The region covered by these contours covers 99% of the total
|>rn|»;1|)llll.y.




Figure 11: Deconvolution The Estimated Parameters
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Fig. 11 From the joint posterior probability for ¢; and ¢; (Fig. 10), one can casily compute the posterior
probability for each €1, panel {A). and €3, panel (B). Using the maxima from these marginal distributions.
a + standard deviation estimate for the pixel values were computed. The maxima are shown in (C) as the
solid hine. the one-standard-deviation error bars are shown as the dashed hnes, and the true signal values

are given by the plus signs.




andd the posterior prabability for e 1s given by
Pleslea, D) = /(1« Ve e, D). (127)

These two probability density functions have been plotted in Fig 11(A) and (B) respectively. The
peak value tor ¢ is approximately 0.35 and for ¢3 it is approximately 0.25. These values were used
to compute the posterior probability for the pixels. The peak values are shown in (C) as the solid
line, the one-standard-deviation error bars are shown as the dashed lines. and the true signal values
are given by the plus signs. Note that this reconstruction has combined the best features of the
two previous examples: The use of information about the functional form causes the reconstruction
to follow the true signal much more closely, while use of the smoothing constraint has suppressed
much of the random fluctuation.

4 Deconvolution — Generalizations

The results of the preceding calculations can be generalized in a number of ways by allowing more
general types of prior information. When the priors were established for the deconvolution problem.
only one function per type of prior information was allowed. There is no reason why more functions
cannot be allowed, and in many cases the need for them is obvious. For example, suppose f; (the
functional form) were a cosine, then a second function, a sine, is needed to properly express the
phase of the sinusoid. Additionally, only three pieces of prior information were used: one on the
functional forn of the signal, one on its first derivative, and one on its second derivative. There
is no reason why one could not have more then three pieces of prior information, and these could
constrain more complicated functions of the pixels than just the first and second derivatives

In this section, the deconvolution results presented in the previous sections will be generalized to
allow for any number of pieces of prior information. This information can specify functional forms
containing any number of amplitudes and functions, and these functions wiil be allowed to constrain
au arbitrary linear combination of the pixels. The total number of pieces of prior information will
be designated as 7. Each piece of prior information will be designated as I4,...,/y. For information
I, the constraint will be written

v+l [ 41 my 2
2| e - DAL =4 (12%)
=0 | ;=0 k=1

where aﬁ, is a known matrix of coeflicients that describe how the pixels interact. For example. it

could deseribe the second-derivative coustraint used carlier. The coefficients A} are the amplitudes
or intensities of the signal functions, and they will be considered as unknowuo, nuisance parameters.
The constraint functions f{' are the analogue of the functions ( fi, f2, and f3) used earlier. However,
there are my, of these functions for each of the r constraints. There are a total of Y m, functions
and amplitudes. Each constraint will have a fractional variance or regularizer associated with it.
These regularizers will be designated as ¢, ..., ¢,. Last, note that the sum over discrete times (the
tindex) runs from 0 < ¢ <7 v + 1. So the above constraints are written implicitly to include the
houndary conditions.

Converting the pth constraint into a probability density function for the pixels is straight forward
and results in

I 2 My , 2ot iy my, 2

. N, (2 n" b Y Togp it ‘
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where the first term expresses the prior information about the amplitudes and the second expresses
the prior information about the pixels. As in the previous examples. this prior may be converted
inte & prior with a double snm: this gives

(2 non
P(Vieg, Iy, 1) QX]){—~;2—(;‘,Z ZZW&vkv( . (130)
A=t {=0
where
,
7I=V+1+L"lk {(131)
k=1

and (n + 1) is the total number of unknown generalized pixels v,;. Following what was done earlier,
these generalized pixels are defined as:

[ u, f0<i<v+i
’111—11-1 fr+l<ci<v+14+my
vi={ A iim fv+l+m <i<v+14+m+m (132)

Ay mymoem, v +l4+mi+-dme_ <i<.

Last the matrix W,:‘, is defined as
W = by — ok + dhy, (133)

where b};. cf; and d} correspond to the coefficients of the terms obtained by squaring the exponent,
combining all of the terms and carrying out the sum over . The matrix b}; is just the coefficient
of the first term of the square in Eq. (129), and is given by

v41
alad ifO<ki<v+l
it k%l
”U = 3={} (134)

0 otherwise.

Note that in setting up the general W} matrix, the indices are allowed to take on values 0 < k,{ < 1),
so in the definition of b'[, it was necessary to state explicitly that this term is zero when either &
or { was greater than » + 1. The matrix C‘,:, corresponds to the coefficient of the cross term, and is
given by

( flfkgu+la.ndu+l+m|+---+m,,_1<l
and I <v+14+m+---4my,
v+l wheren =l —v~1-my— - —my_

Y aifit) { OR
fi<v+landv+l4+m+--4+me_y) <k
and k<wv4+1l4my+--4+my,

wheren =k —v—1-my - —my_

w

Ckl {135)

I
ii

0 otherwise.




The third term is the square plus first the prior probability for the amplitudes, and is defined as

v+ L4+ -+, <kl

v+l .
n and kI <v+li4+mp+---+my,
diy = b“ * ?:('f"‘ (b whereny =k —v —-1 —my—--my_y {136)
andng=l—-v-1l—-—my—---mu_.
0 otherwise

where ég; is the Kronecker delta function. As was done previously, the individual priors may be
combined to obtain a single prior which expresses all of the prior information. This prior is given

3%
2\ 1 1 &
P(Vleo, ... er, 1) = (fAo-+- Ay (21ra ) eXp{ ~ o3 ZZuvkvl (137)
R =y =
where ,
Zu= )Y aWh (138)
n=l

and {Ag--- Ay} are the eigenvalues of the Zy matrix.
The mathematics from the three previous sections may now be repeated to obtain a generalized
result. First, the posterior probability for the jth generalized pixel is given by

Nd? = 2D,v; + giv° — h(v;)- h(vy
P(slc0r. . er0, D, 1) o exp{— 1% g’;/ ) Blvy) (139)
where D; was defined earlier, Eq. (110),
1 < vy
hi(vj) = —,\; Z_; [Di — gjivjles (1 #7) (140)
1#)

7
h(vj)-h(v;) = > hi(vj) (141)

2

1£3

and Aj, - -+ Aj are the eigenvalues of the jth cofactor of the gy matrix. The g matrix is defined as
9k = Tkt + Skl (142)

where S was defined in Eq. (112).
Next, the posterior probability for the jth pixel value, independent of the variance of the noise.
is given by

_1N
h(vy) - h(v;) + 2Djvj — yj]v]2 z _
P(mlen,....er. D 1) x [l— T (143)
Last, the joint marginal posterior probability for the regularizers is given by
1 N
_ PYIRERD WP hiey,....0)hiley,. .. 0} 7
I'teg.. ., leas D1 R - — (144
{eg trlro yox {e r) ( \f,"'/\;, 1 N )
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where Al )\17 are the eigenvalues of the ¢;x matrix, kq. (142),

U
hicy,. ... (r)-/:(q,....vr)':Zh,(q‘... r)
1=f{)

(3%

(14h)

and

; Djeq; (146)
\/;:J=U

where in Eqgs. (144-146), the cigenvalues { A, . . ., .X,,} are the eigenvalues of the g;x matrix, Eq. (142), °
and ¢, are its eigenvectors.

Note that care must be taken when interpreting the results of these calculations, because the
notation for the eigenvalues and eigenvectors has not been changed when different matrices were
used. The meaning should remain clear because when each formula is given the matrices being
diagonalized are clearly stated. But just to be clear on this point, when the posterior probability
for the jth pixel is being computed the eigenvalues Xy, ..., Apu’ and eigenvectors e;j refer to the
Jth cofactor of the g;r matrix. However, when the posterior probability for the regularizers is
computed Ay ... X, refer to the eigenvalues of the ¢;x matrix (not thejth cofactor) and ek refer to
its eigenvectors of gj.

4.1 Estimating The Pixel Values

It is one thing to formally derive a result and quite another for it to be useful. The posterior
probability for the individual pixels given all of the prior information, Eq. (143), is one of these
types of results. While this result will prove useful in examining individual, important, pixels it is
not the way to estimate all of the pixels. Even if one were to compute this posterior probability
density for all of the pixels, it still would not give one an estimated signal; rather it would tell
one what is actually known about the signal values and the uncertainty in those values. What is
actually needed is an estimate of the pixels and the uncertainty in the estimate.

There are many ways to estimate a parameter using probability theory and the estimate of
choice will depend on what one stands to lose if one is wrong. Two different types of estimates
are the maximum of the posterior probability, and mean or expected value of a parameter. In
this calenlation, the expected value and peak values are the same. Thus an the expected value
and standard deviation estimate for the pixels is readily available and will be used as the pixel
estimates.

The expected value of the jth generalized pixel is given by

(vjlean. . verya 0) = /dt}g...dv,,v,P(vg,...,v,,l(o,...,(,,a, D. I (147) y

where the notation (v)leo.....¢r,a,1) means the expected value of pixel v, given that «q,..., €,

and = are known. But note that it is the fully normalized joint probability density function that is :
to be used. Consequently, when this calculation is performed the probability density function will

have to be normalized:

duy ... dvgy, [ — A
(haeenverso) = [ G ey "7 J 2 M= 2D Devey (1
. =0 {=0 =)

where
n

n
. 1 .
Normalization = /rlrn, dv,,nxp{ — E grrerr — 2 S I)“A} (119)
Qo

k=) 1=t A 1)
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Fvaluating the integrals, one obtains

eijh
(v)le0v. .. er ) = Z\'}J {150)
Simiarly the expected mean-square value of the pixels is given by

(vjveleo, ..., ¢rya) = /dvg ... dvgujui P(vo, ..., vyleo, . .. &ry0, D, ), {151)

and one finds

(152)

(153)

Note that while the individual probability distributions would require one to invert a matrix for
each value of vy; the (mean + standard deviation) estimate may be done for all of the pixels with
a single matrix inversjon.

4.2 Estimating The Noise Level
Before the above result can be used, (#2) must be computed. To compute (o2), one must evaluate
(02 = /ma2p(a|<0,- v ery D, I)do (154)

0

where P(oleg,--,€r, D, 1) is the {ully normalized posterior probability {or ¢ given the regularizers
and the data. But using the rules of probability theory, this is just the prior probability for o times
the probability for the regularizers given o. So the expectation value may be written as:

(02)=f a’daP(a|l)P(cy,- - ¢rle0,0, D, 1). (155)
(]

where

a2 - o) Ry,
Pley, - trle,a, D 1) o g™+ +me=N oy, {N‘{ We, 2’;;) et el | . (156)
i
P(a|l) x = (157)

and h(ey,...,e.)-h(ey, ... ¢) is given by Eq. (145). The normalization constant needed to ensure
that the total probability is one is given by

¥y
normalization = / daP(a|l}P(ey, - erca,a. D). {19%)
0
Making the appropriate substitutions and evaluating the integrals gives

N | —
{a®) “{-—-”I - [.Vllx Iy ey hiley oo () 09
Ny =y
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as the extimated standard deviation for the noise,

At 1his point in the calculation it would appear that another numerical example is needed
to illustrate these new additional calculations and generalizations. However that is not the case.
because all of the examples given in the text were computed by using these final results. That is to
say, all of the computer programs used in the numerical calculations implemented this generalized
calculation. To produce any specific example the model functions and the pixel smearing matrices
were changed to produce the desired calculation.

5 Summary And Conclusions

Proceeding through stages, this paper has explored the deconvolution problem in varying degrees of
complexity. In the first two sections, the deconvolution problem was simplified to the interpolation
problem. This problem was then explored to see how varying the prior information affects the
results of the calculation. These calculations illustrate that the interpolation problem is easily
solved by incorporating prior information into the problem. The more cogent the prior information
the better the reconstructions. However, even with very crude prior information probability theory
does not lie. The interpolations always covered the correct signal at one and sometites two standard
deviations.

After obtaining an understanding of the interpolation problem, the calculation was then gener-
alized to include the convolution. Including the convolution did not actually change the results from
the tirst two sections, it only generalized them. The effect of prior information was then explored
again to show how including different types of prior information affects the results. Again the
resuits were essentially identical to what was found in the first two sections: Including more cogent
prior information helps the deconvolution problem; but again when only limited prior information
is available, the results obtained overlapped the correct result at one and sometimes two standard
deviations.

lLast, the entire formalism was generalized to include much more arbitrary types of prior in-
formation. This formalism. given in the preceding section, is the only version of the calculation
programmed on the computer. Fvery example given in this work was essentially an example of the
power of the general calculation presented in the previous section.

This work represents at best, a first initial exploration of the deconvolution problem. Much
remains to be done. For example this work did not address the use of priors outside of the class
of general Gaussian priors. While this class is wide. it does not include such priors as the entropy
prior. An interesting problem would be to try to combine the best aspects of both the entropy prior
and the Gaussian priors used in this calculation. Indeed there is some evidence based on work in
other fields that this could be very productive, [28].

Last. this work suggests how to use probability theory to solve other types of outstanding
problems. In particular relatively straightforward modification to this calculation will allow inho-
mogeneous linear differential equations with either boundary value, initial value, or any other type
of asymptotic condition to be solved. Additionalily, using the techniques developed in this paper,
the moment problem, i.e.. inferring a function from a finite number of its moments, should now be
a solvable problem. The onlv change in this caleulation is that the limit as the noise variance goes
to zero is needed to solve this problem.

If there is a single major accomplishment for this paper, it was to demonstrate that the results
one obtains depends critically on the prior information put into the problem. To put it bluntly, there
is no such thing as a single best decanvolution. Fverv result from a Bayesian calculation is only as
good a- the prior information that goes into it. However, every Bayvesian caloulation carries with it
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aneasure of the nneertamty in the caleulation. While some priors will gave poor reconstructions,

probability theory warns one of this by making the uncertainty in the estimates large (large enough
1o rover the correct value of the signal). So even the results from very uninformative priors still

give meaningful reconstructions.
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